# Low Frequency Collimator Measurements Preliminary Results - 14 Nov 2007

F.Caspers, T.Kroyer, E.Metral, F.Roncarolo, B.Salvant

### Theory

#### We want to bench mark theory:



#### **Measurement Method**

#### Coaxial wire method to estimate transverse impedance

- single wire displaced
- two wires

has low sensitivity at low frequencies

Extension of two wires method:

Evaluation of the transverse impedance of a DUT by measuring the inductance variation of a probe coil

F.Caspers, A.Mostacci, L.Vos <u>http://lhcp.web.cern.ch/lhcp/LCC/</u> LCC\_2002-01.htm#main3a

F.Caspers, A.Mostacci, U.Iriso

**Bench Measurements of Low Frequency Transverse Impedance**, CERN-AB-2003-051-RF Measured quantity: the complex impedance of the coil from the S11 (reflection) signal

- Z reference --> high conductivity material (copper)
- Z DUT --> low conductivity material (graphite)

From measurements:



 $Z_{meas} = Z_{rw}^{graph} - Z_{rw}^{Cu} \Rightarrow$  simple processing to plot  $Z_{rw}^{graph}$  (next slide)

#### Measurement set up

Best coil prototype used until now:

 $L = 30 \, cm$  $\Delta = 2.5 \, mm$ Nturns = 9



-



 $10cm \times 15cm$ 1cm thick



# **Measurement Setup**



#### Raw data, as measured with VNA





### **Preliminary results**



But:

 $Z_{meas} = Z_{rw}^{graph} - Z_{rw}^{Cu} \Rightarrow$  simple processing to plot  $Z_{rw}^{graph}$  (next slide)

#### **Preliminary results - processed data**



### Next steps I

Check/Improve: coil and plate positioning and alignment data processing/averaging other gap configuraitons

#### Test

more coil prototypes produced by us with more turns different lengths

coils from AT department much more turns but thinner wires

## **Next steps II**

Collimator Jaws Collimator assembly