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Summary 

Observation of small-angle scattering and Landau damping of collective instabilities are 
partly conflicting requirements because of the small value of the transverse beam emittance. 
The physics requests set a maximum value for the beam emittance. The beam stability 
requires a minimum value. A method to find good sets of beam parameters is given. 

 
 

1. Introduction 
The TOTEM experiment aims mainly at measuring the total proton-proton cross section at 

the LHC [1]. The method used is luminosity independent. It requires simultaneous 
measurement of elastic scattering at low momentum transfer and total inelastic rate. It aims at 
an absolute error of about 1 mb. The interface between TOTEM and the LHC machine is 
quite intricate since a special, high-beta (β* = 1540 m), optics is required to observe small-
angle scattering. Besides, detectors, called Roman Pots (RPs), sit close to the beam axis. They 
are installed about 220 m from the collision point. The requested luminosity is in the range of 
1028 cm-2s-1, the actual value being not critical. 

The impedance of the RPs does not significantly affect the beam stability, but a potential 
problem is associated with the electromagnetic power deposited. The problem is not when the 
detector is in the IN-position. It is when it is in the OFF-position, as a cavity is then created. A 
mechanical way of shielding it has been found [2]. 

However, TOTEM beams may suffer from the resistive-wall instability induced by the 
collimator impedance at top energy because of the small emittance necessary for the 
measurements [3]. The requests for the TOTEM experiment are briefly reviewed in Section 2. 
Stability diagrams with maximum available octupolar strength at top energy and coherent tune 
shifts for the most unstable coupled-bunch mode number and head-tail mode 0 are then given 
and discussed in Section 3, for different sets of beam parameters. Finally, a method to find 
good sets of beam parameters is given in Section 4. 
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2. Physics requests 
The measurement of the total proton-proton cross section requests an efficient detection of 

scattered protons with a momentum transfer squared of 23 c)/GeV(105t −×≈− . In order to 
have a sufficiently high acceptance of the detector in the relevant range 

23 c)/GeV(105t −×>− , the value of the minimum detectable momentum transfer squared 
has to be of the order of 23

min c)/GeV(1021t −×−≈−  [1]. For 23
min c)/GeV(10t −=−  

and the beam momentum p = 7000 GeV/c, the associated scattering angle is given by  
 

 .µrad4.52
7000
0.001

p
t

θ min
min ==

−
=  (1) 

 
This minimum angle minθ  is computed as follows. The RPs are placed tangent to the beam 

halo at a location where the trajectory of the scattered protons has a maximum amplitude. The 
bottom of the RPs has a certain thickness d as shown on Fig. 1. The bottom of the pot must be 
at a distance from the beam centre of at least 10 σ, where σ is the rms transverse beam size at 
the location of the RP, in order not to intercept the protons in the secondary beam halo. This 
assumes that the primary collimators are set at a distance from the beam centre of 7 σ (the 
secondary halo extends then up to 1.4 × 7 ≈ 10 σ). In principle the primary collimators could be 
set at a distance from the beam centre of 6 σ, but we kept a safety margin of 1 σ. 
 

  
 

Figure 1: Rough sketch for the TOTEM experiment. 
 

The minimum scattering angle which can be detected is then given by 
minθ . Leff = 10 σ  + d, where Leff = 272 m is the matrix element which transforms the angle at 

the interaction point (IP) in transverse displacement at the RP. For an arbitrary setting of the 
primary collimators, the normalised rms transverse beam emittance β/σγβε 2

lN =  must 
satisfy accordingly  
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where β = 48 m is the betatron function at the RP, βl and γ the relativistic velocity and mass 
factors, d ≈ 0.5 mm, h = 1.4 the gemetrical factor of the secondary halo (if the gap of the 
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primary collimators is G = n σ, the secondary halo extends up to h  n σ) [4]. A plot of max
Nε  vs. 

the gap of the collimators is represented in Fig. 2. 
  
 
 
 
 
 
 
 
 
 
  
Figure 2: Plot of max

Nε  (due to physics requests) vs. the gap of the collimators (in beam σ). 
The points above the curve are forbidden. 

3. Stability diagrams and coherent tune shifts 
The different scenarios which have been studied first are summarised in Table 1. The gap 

G0 of the collimators corresponds to the one for the nominal LHC beam [3], i.e. it is equal to 
6 σ of the beam with a normalised rms transverse emittance εN = 3.75 µm. The gap is already 
very small in “normal” operation, and needs to be further reduced for the TOTEM experiment 
in order to protect the RPs. 

 
Table 1: Different sets of beam parameters studied. 

Number of protons per bunch Nb 3×1010 
Number of equi-spaced bunches M  43 or 156 

Normalised rms transverse emittance εN   1 µm 
Gap of the collimators G 

(G0 is the gap for the nominal LHC beam [3])
G0 × (1, ½, ¼) 

 
Stability diagrams corresponding to a quasi-parabolic distribution function [5] are plotted 

in Fig. 3 for the case Nb = 3×1010 p/b, G = G0, εN = 1 µm, and εN = 1.2 µm. The beam is stable 
if the coherent tune shift for the most unstable coupled-bunch mode number and head-tail 
mode 0 lie inside the stable region (below the curve). It is unstable otherwise. The coherent 
tune shifts have been computed using Sacherer’s formalim [6], taking into account the 
inductive-bypass effect for the resistive-wall impedance of the collimators [7].  

Note that the two stability diagrams correspond to positive (a > 0) or negative (a < 0) 
detuning according to the sign of the octupole current, and that these curves scale linearly 
with the transverse beam emittance. Furthermore, the coordinates of the dot which represents 
the coherent tune shift, varies linearly with the number of protons per bunch. The real part of 
the coherent tune shift (which is related to the imaginary part of the coupling impedance) 
scales with ~G-3, whereas the instability rise-time (which is related to the real part of the 
coupling impedance) scales with ~G. 

The results are that all the cases of Table 1 are unstable, i.e. the coherent tune shifts for the 
most unstable coupled-bunch mode number and head-tail mode 0 lie outside the stable region, 
with instability rise-times between ~10 and 300 s (see Table 2). This is due to the “almost 
single-bunch” effect of the inductive bypass in the resistive-wall impedance from the 
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collimators [3]. These results could have been in fact anticipated from the results for the 
nominal LHC beam, where Nb = 1.15×1011 p/b and εN = 3.75 µm, and which is unstable [3]. 
  

Table 2: Instability rise-time for the different scenarios. 
Rise-time [s] G = G0 × 1 G = G0 × ½  G = G0 × ¼    

M = 43 268 129 64 
M = 156 43 19 9 
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Figure 3: Stability diagrams with maximum available octupolar strength and coherent tune 
shifts for the most unstable coupled-bunch mode number and head-tail mode 0, and for the 
case Nb = 3×1010 p/b, G = G0, εN = 1 µm (upper ⇒ unstable), and εN = 1.2 µm (lower ⇒ 
stable). The horizontal and vertical axes are the real and (minus) imaginary parts of the tune 
shift respectively. 
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The TOTEM beams of Table 1 have the same brightness as the nominal LHC beam, as both 
intensity and emitance are divided by ~4. Therefore, the real part of the coherent tune shift is 
~4 times smaller, but so is the stability diagram. Eventually the beam stability is almost the 
same, except that now the instability rise-times are much longer (due to the “almost single-
bunch” effect of the inductive bypass).  

Compromises are proposed in Table 3, taking 10% safety margin for the coherent tune 
shift to be inside the stable region. 

 
Table 3: Possible compromises. 

G = G0 × 1 G = G0 × ½  
Nb = 3×1010 p/b 
εN = 1.2 µm 
⇒ G at 10.6 σ 

Nb = 3×1010 p/b 
εN = 8.8 µm 
⇒ G at 2 σ 

Nb = 2×1010 p/b 
εN = 0.8 µm 
⇒ G at 13 σ 

Nb = 2×1010 p/b 
εN = 5.9 µm 
⇒ G at 2.4 σ 

Nb = 1×1010 p/b 
εN = 0.4 µm 
⇒ G at 18.4 σ 

Nb = 1×1010 p/b 
εN = 2.9 µm 
⇒ G at 3.4 σ 

 
Starting with the good set of beam parameters (for beam stability considerations)  

Nb0 = 3×1010 p/b, εN0 = 1.2 µm and G0 = 10.6 σ0, it can be deduced that the following 
condition can be used to find another good set of beam parameters, 
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It is extremely attractive to consider cases where the beam brightness is smaller than the 
nominal one in order to reduce the distance of the RP to the beam. For instance for the case 
Nb = 3×1010 p/b and εN = 1.2 µm, the collimator gap set at the nominal value G0 corresponds 
to 10.6 σ, which is too large as 7 σ is sufficient. If the beam emittance is increased to 1.97 µm, 
Eq. (3) is fulfilled with G = 7 σ. In this case 23

min c)/GeV(107.1t −×=− , which is 
satisfactory since mint−  has to be of the order of 23 c)/GeV(1021 −×−  (see Section 2). It is 
possible to reduce further mint−  by decreasing both the emittance and the bunch intensity as 
discussed below. 

4. Discussion and conclusions 
There is a trade-off between small-angle scattering observation and beam stabilisation by 

Landau damping. On the one hand, observation of small-angle scattering sets a maximum 
value for the transverse beam emittance, i.e. Eq. (2) has to be fulfilled. On the other hand, 
beam stability requires a minimum value for the transverse beam emittance, i.e. Eq. (3) has to 
be satisfied. The set of beam parameters (Nb0 = 3×1010 p/b, εN0 = 1.2 µm and G0 = n0 σ0, with 
n0 = 10.6) satisfies both conditions. This is therefore, a good set of beam parameters for the 
TOTEM experiment. The other good sets of beam parameters can be found as follows. Noting 
that the gap G is related to the emittance through 
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the conditions of Eqs. (2) and (3) can be put together in the following equation  
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These conditions are plotted in Figs. 4 and 5 for two different numbers of protons per bunch, 
for 23

min c)/GeV(10t −=−  and 23
min c)/GeV(102t −×=−  respectively. 
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Figure 4: Minimum (due to beam stability condition) and maximum (due to physics requests) 
normalised rms transverse beam emittances vs. the gap of the collimators (in beam σ)  
for 23

min c)/GeV(10t −=−  and (a) Nb = 5×109 p/b, (b) Nb = 3×1010 p/b. 
 

If the RPs have to be protected against the secondary halo, it is important to know the 
value of the emittance associated with a collimator gap equal to 7 σ as it provides the smallest 
value of minθ . This corresponds to the points associated with n = 7 on Figs. 4 and 5. These 
points are plotted on Fig. 6 as a function of the number of protons per bunch. 
 

6 8 10 12 14 16
n = G

ÅÅÅÅÅÅÅ
s

0.5

1

1.5

2

2.5
eN @mmD

min
Nε

max
Nε

6 8 10 12 14 16
n = G

ÅÅÅÅÅÅÅ
s

0.5

1

1.5

2

2.5
eN @mmD

min
Nεmax

Nε



 7

   (a)  
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Figure 5: Minimum (due to beam stability condition) and maximum (due to physics requests) 
normalised rms transverse beam emittances vs. the gap of the collimators (in beam σ)  
for 23

min c)/GeV(102t −×=−  and (a) Nb = 5×109 p/b, (b) Nb = 3×1010 p/b. 
                                      
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Minimum (due to beam stability condition) and maximum (due to physics requests) 
normalised rms transverse beam emittances vs. the number of protons per bunch for the gap of 
the collimators G = 7 σ. 
 

In conclusion, the smallest value of minθ  achievable is obtained for Nb = 5×109 p/b,  
εN = 0.96 µm and G = 7 σ, and is given by  
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which yields 23

min c)/GeV(10t −=− .  
Finally, it should be noticed that the beam stability from Landau damping has been 

evaluated up to this point for the case of a quasi-parabolic distribution function, which 
extends up to 3.2 σ in transverse space [5]. This distribution function underestimates the beam 
stability if the transverse beam profile extends up to 6 σ, as it is foreseen to be the case in the 
LHC at top energy with the nominal collimator settings. The Gaussian distribution extends to 
infinity in transverse space and thus overestimates the beam stability. In Ref. [8], the beam 
stability has been analyzed for the distribution function consistent with the collimator settings 
at top energy, i.e. extending up to 6 σ in transverse space. The result is that a factor of ~2 is 
gained for the real part of the coherent tune shift compared to the case with the quasi-
parabolic distribution function. This gain can be used either to reduce the value of the 
emittance by the same factor 2, the corresponding momentum transfer squared then becomes 

23
min c)/GeV(1072.0t −×=− , or to increase the beam intensity. For εN = 1 µm, the number 

of protons per bunch can be increased to Nb = 1.04 ×1010 p/b. The corresponding momentum 
transfer squared is 23

min c)/GeV(101.1t −×=− . 
The case of a distribution extending up to 6 σ but with more populated tails than the 

Gaussian distribution has also been considered (as this may be the case in reality in proton 
machines, where several diffusive mechanisms can take place, in particular during beam 
acceleration) and revealed that a factor of ~4 is gained in this case for the real part of the 
coherent tune shift compared to the case with the quasi-parabolic distribution function. This 
gain can be used either to reduce the value of the emittance by the same factor 4, the 
corresponding momentum transfer squared then becomes 23

min c)/GeV(1052.0t −×=−  
(i.e. close to the Coulomb region [9]), or to increase the beam intensity. For εN = 1 µm, the 
number of protons per bunch can be increased to Nb = 2.08 × 1010 p/b (the corresponding 
momentum transfer squared is the same as before, i.e. 23

min c)/GeV(101.1t −×=− ). 
However, the new stability diagrams of Ref. [8] should be used with care for beam 

stability predictions, as the presence or not of the high-amplitude tails in the distribution can 
substantially affect the amount of Landau damping. This is why the analysis has been made in 
this note considering the “conservative” quasi-parabolic distribution function, which does not 
take into account the beneficial effect on Landau damping of the particles with transverse 
amplitudes larger than 3.2 σ. Furthermore, reducing the normalised rms transverse beam 
emittance down to ~0.24 µm (for the case where 23

min c)/GeV(1052.0t −×=− ) is far from 
being easy. 
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